Severe myopathy mutations modify the nanomechanics of desmin intermediate filaments.

نویسندگان

  • L Kreplak
  • H Bär
چکیده

Mutations in the intermediate filament (IF) protein desmin cause severe forms of myofibrillar myopathy characterized by partial aggregation of the extrasarcomeric desmin cytoskeleton and structural disorganization of myofibrils. In contrast to prior expectations, we showed that some of the known disease-causing mutations, such as DesA360P, DesQ389P and DesD399Y, are assembly-competent and do allow formation of bona fide IFs in vitro and in vivo. We also previously demonstrated that atomic force microscopy can be employed to measure the tensile properties of single desmin IFs. Using the same approach on filaments formed by the aforementioned mutant desmins, we now observed two different nanomechanical behaviors: DesA360P exhibited tensile properties similar to that of wild-type desmin IFs, whereas DesQ389P and DesD399Y exhibited local variations in their tensile properties along the filament length. Based on these findings, we hypothesize that DesQ389P and DesD399Y may cause muscle disease by altering the specific biophysical properties of the desmin filaments, thereby compromising both its mechanosensing and mechanotransduction ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle.

Muscle contraction relies on a highly organized intracellular network of membrane organelles and cytoskeleton proteins. Among the latter are the intermediate filaments (IFs), a large family of proteins mutated in more than 30 human diseases. For example, mutations in the DES gene, which encodes the IF desmin, lead to desmin-related myopathy and cardiomyopathy. Here, we demonstrate that myotubul...

متن کامل

Severe muscle disease-causing desmin mutations interfere with in vitro filament assembly at distinct stages.

Desmin is the major intermediate filament (IF) protein of muscle. Recently, mutations of the desmin gene have been reported to cause familial or sporadic forms of human skeletal, as well as cardiac, myopathy, termed desmin-related myopathy (DRM). The impact of any of these mutations on filament assembly and integration into the cytoskeletal network of myocytes is currently not understood, despi...

متن کامل

A dysfunctional desmin mutation in a patient with severe generalized myopathy.

Mice lacking desmin produce muscle fibers with Z disks and normal sarcomeric organization. However, the muscles are mechanically fragile and degenerate upon repeated contractions. We report here a human patient with severe generalized myopathy and aberrant intrasarcoplasmic accumulation of desmin intermediate filaments. Muscle tissue from this patient lacks the wild-type desmin allele and has a...

متن کامل

Phenotypic Patterns of Cardiomyopathy Caused by Mutations in the Desmin Gene. A Clinical and Genetic Study in Two Inherited Heart Disease Units.

Desminopathies are a largely autosomal dominant group of rare diseases caused by mutations in the desmin gene. Because desmin is the main component of intermediate filaments in cardiac, skeletal, and smooth muscle and of Purkinje fibers, these conditions are characterized by skeletal myopathy and cardiomyopathy (mainly restrictive) with arrhythmias or conduction disorders. The aim of our presen...

متن کامل

Downstream effects of plectin mutations in epidermolysis bullosa simplex with muscular dystrophy.

Mutations of the human plectin gene (PLEC) on chromosome 8q24 cause autosomal recessive epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). In the present study we analyzed the downstream effects of PLEC mutations on plectin protein expression and localization, the structure of the extrasarcomeric desmin cytoskeleton, protein aggregate formation and mitochondrial distribution in ske...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 385 4  شماره 

صفحات  -

تاریخ انتشار 2009